当前位置:商业频道首页 > 头条推荐 > 正文

揭秘Sora:用大语言模型的方法理解视频(2)

对于视频生成模型而言,块不仅包含了局部的空间信息,还包含了时间维度上的连续变化信息。模型可以通过学习patches之间的关系来捕捉运动、颜色变化等复杂视觉特征,并基于此重建出新的视频序列。这样的处理方式有助于模型理解和生成视频中的连贯动作和场景变化,从而实现高质量的视频内容生成。

OpenAI又在块的基础上,将其压缩到低维度潜在空间,再将其分解为“时空块”(spacetime patches)。

揭秘Sora:用大语言模型的方法理解视频

晕了是不是,别急,一个一个解释。潜在空间是一个3年前出现的概念,是指一个高维数据通过某种数学变换(如编码器或降维技术)后所映射到的低维空间,这个低维空间中的每个点通常对应于原始高维数据的一个潜在表示或抽象特征向量。但是呢,优化强大的扩散模型往往需要消耗数百个GPU日的计算资源,并且由于其序列评估性质,推理成本较高。因此,本质上来讲潜在空间,就是一个能够在复杂性降低和细节保留之间达到近乎最优的平衡点,极大地提升了视觉保真度。

时空块则是指从视频帧序列中提取出的、具有固定大小和形状的空间-时间区域。相较于块而言,时空块强调了连续性,模型可以通过时空块来观察视频内容随时间和空间的变化规律。

为了制造这些时空块,OpenAI训练了一个网络,用于降低视觉数据的维度,叫做视频压缩网络。这个网络接受原始视频作为输入,并输出一个在时间和空间上都进行了压缩的潜在表示。Sora在这个压缩后的潜在空间中进行训练和生成视频。同时,OpenAI还也训练了一个相应的解码器模型,用于将生成的潜在向量映射回像素空间。

热点推送

本周关注

MORE